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Problem 1:

In this problem, we analyzed the drug data set. This data set consisted of the following columns
of data:

1. Identification code

2. Age (x1)

3. Depression score (x2)

4. Drug use history (x3): 1 = Never (h1), 2 = Previous (h2), 3 = Recent

5. Number of prior drug treatments (x4)

6. Race (x5): 0 = White, 1 = Otherwise (r1)

7. Treatment randomization id (x6): 0 = Short, 1 = Long (t1)

8. Treatment site (x7): 0 = Site A, 1 = Site B (s1)

9. Response variable (Y ) – Remained drug free for 12 months: 1 = Yes, 0 = No.

Before modeling the data, we discuss what our intuitions tells us that we should expect. Since
the response variable is whether or not the patient remained drug free, we could expect depression
score, drug use history, number of prior drug treatments, and treatment randomization to all have
an effect on the response variable. Age, race, and location of treatment might not have much of an
effect on the response variable and so we should expect these covariates to not be included in the
final model. However, now we analyze the data set to see.

To begin the model building process, we considered a logit link and probit link since the response
variable is binary. The glm function R under these two links returns the same conclusion: to keep
x1, h1, x4, and t1 in the model, given everything else is included. The AIC for the logit link was
637.2 and the AIC for the probit link was 637.4. Next, I considered using the step AIC function
in R to see if we can find another reasonable model. The step AIC for both of these link functions
concluded to only use the predictors x1, h1, x4, and t1, which glm deemed significant. The AIC for
the logit model with predictors x1, h1, x4, and t1 is 635.4, while the AIC under the probit model
with these predictors is 635.7. Since the logit link continuously had smaller AIC, we proceeded with
the logit link. Next, we used ANOVA to check if this reduced model is sufficient before proceeding.
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Running the ANOVA function in R, we obtain a large p-value of 0.6721, indicating that this reduced
model is sufficient. We proceeded with this reduced model, which is

Model 1: x1, h1, x4, t4.

Next, we considered the possibility of interaction terms, and so we fit a model using the reduced
model with the inclusion of all interactions terms. In doing so, we see that the interaction x1 : x4
might be significant, given everything else is in the model. We added this variable to the reduced
model and saw that x1 became insignificant, but AIC only dropped to 628.7. So, for parsimonious
reasons, we dropped the interaction and kept x1. Next, we checked for significant higher order
terms. That is, we considered adding x21 and x24 to the reduced model. In doing this, we saw that
neither of these terms were significant. Therefore, we still consider the reduced model given above.

The next step was to run bestglm for competing models. We had this function return the top 3
models, in which the best model according to bestglm was our current reduced model. The other
two models were

Model 2: x1, h1, x4, t1, r1

Model 3: x1, h1, t1, s1.

The AIC for model 2 according to bestglm was 630.0506 and the AIC for model 3 was 630.5289. It
should be noted that the AIC for our reduced model according to bestglm was 628.9877, not 635.4.

Now we have three competing models. Before considering predictive power of these competing
models, we considered plot diagnostics. The residuals plot for model 1 is shown below:

.

It can be seen that the residuals plot shows nothing out of the ordinary for a logit model. Also,
it appears that observation 471 is influential and observations 350, 575, 19, 120, and 7 are all
influential and high leverage. These point should be remembered in the predictive power analysis.
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The residuals plot for model 2 is shown below:

.

Here, we see the only difference is that observation 350 became not high leverage. The last residuals
plot is for model 3, shown below:

.

The only difference between this plot and the plot for model 1 is that it appears that observation
19 became not influential. We proceeded with cross-validation to consider the predictive power of
these three models.

To check the predictive power of these three models, we randomly chose to remove observations
25, 78, 111, 165, 199, 208, 344, 407, 492, and 536. Then, we refit the three models and predicted
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these observations. In doing this, the sum of the squared deviations from the true values are
recorded below:

res1 = 22.1413, res2 = 23.6422, res3 = 22.5605.

Therefore, since model 1 has the smallest prediction error, we chose this as our final model. The
model is specified as

logit (π̂i) = −3.08509 + 0.053083xi1 + 0.735059hi1 − 0.066286xi4 + 0.466711ti1

π̂i =
exp{−3.08509 + 0.053083xi1 + 0.735059hi1 − 0.066286xi4 + 0.466711ti1}

1 + exp{−3.08509 + 0.053083xi1 + 0.735059hi1 − 0.066286xi4 + 0.466711ti1}
.

A shortcoming of this model includes the amount of observations that were high leverage or
highly influential since this can greatly affect the estimates, but there is not much that we can do
about this. Another shortcoming is that our intuition was not met and so it could be difficult to
explain this model.

Problem 2:

For this problem, we analyzed the crab data set. The crab data set consisted of the following data:

1. ID

2. Crab color (c1), (c2), (c3)

3. Spine conditions (s1), (s2)

4. Carapace width (x3)

5. Weight (x4)

6. Satellites (Y ).

The response variable Y is the number of satellites (male crabs) attracted to a female crab. Again,
before modeling the data, we discuss any intuitions that we might have. Perhaps the color of the
crab and spine conditions won’t have much effect on the number of satellites while the width and
weight (essentially the size) might.

To begin the model building process, we considered a poisson with log link model since we have
count data. The glm function in R under this link returns that x4 and c1 are the only significant
predictors with an AIC of 920.86. However, in this situation, it does not make sense to collapse
any of the factor levels. Next, we consider the step AIC function in R to identify other possible
models. In doing so, we see that a possible reduced model is x4, c1, and c2 as predictors with an
AIC of 915.08. We quickly run an ANOVA test to test the adequacy of this model. This returned
a p-value of 0.6959 and therefore the reduced model is sufficient. This model is

Model: x4, c1, c2.

The next step is to consider interaction terms. We fit a model including all possible interaction
terms of model 1 and saw that interactions x4 : c1 and x4 : c2 were significant, given everything
else in the model being included. This gave a model with an AIC of 908.55, which seems to be a
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considerable reduction from the AIC of model 1. Next, we considered adding higher order terms,
specifically x24. This model said that c2 and x4 : c2 were insignificant, with an AIC of 902.55.
However, perhaps x4 : c2 became insignificant since x24 was included and c2 became insignificant
because of x4 : c2. Therefore, we considered dropping the interaction term x4 : c2 to see if c2
became significant, which it did. This model had an AIC of 901.83 and became one of our models,
i.e.

Model: x4, c1, c2, x4c1, x
2
4.

The next step was to use bestglm in R to obtain other candidate models. This function returned that
x3 could be quadratically related to the response variable. We used the best two models returned
by bestglm since our model 1 seems better than the third best model according to bestglm. Thus,
the three candidate models are

Model 1: x3, x4, c1, c2, x
2
3

Model 2: x4, c1, c2, x4c1, x
2
4

Model 3: x3, x4, c3, x
2
3.

The AIC for model 1 according to bestglm was 901.078 and the AIC for model 3 was 901.906.
Recall that the AIC for model 2 was 901.83.

Now we have three competing models and so we run diagnostics on these. The diagnostics plot
for model 1 is shown below:

.

Looking at this plots, it should be noted the amount of observations which influence and leverage.
It appears that about 15 observations have high influence on the model and about 16 with high
leverage Also, we see that one observation has very high leverage. The plots for model 2 is shown
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below:

.

Again, we see quite a few with high influence and high leverage. Specifically, about 15 influential
observations and about 11 high leverage observations, with one observation have very high influence
and leverage. The plots for model 3 is shown below:

.

Like the plots for models 1 and 2, we see about 9 observations with high influence and about 11
with high leverage, with one observation having extremely high influence and one with extremely
high leverage. The last step was to cross-validate these three models to choose the model with the
smallest prediction error.

To assess the predictive power of the three candidate models, we randomly removed 5 observa-
tions. The observations that were left out were 25, 63, 109, 150, and 173. The prediction error for
the three models were

res1 = 2.59, res2 = 2.85, res3 = 3.06.
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Here, we see that model 1 has the smallest prediction error and the smallest AIC and therefore we
chose this model as our final model. It can be specified as

log (µ̂i) = −20.83352 + 1.49463xi3 + 0.678886xi4 + 0.378522ci1 + 0.234012ci2 − 0.027755x2i3.

A shortcoming of this model is the quadratic term x3, which says that the carapace width is
quadratically related to the number of satellites. This could be difficult in explaining our model.
Also, it appears that crab color was significant, which goes against our intuition. However, perhaps
an expert in this area might say that crab color is indeed important.

Problem 3:

The last data set to be analyzed is the LA marathon data. This data consisted of the following:

1. Sex (s1)

2. Age (x2)

3. Finish time (Y )

4. Place.

The response variable Y is the finishing time of the runner. We have given sex dummy variables,
where s1 represents females and males is baseline. It should be noted that we had 93 missing
observations, in which we simply removed them since we have over 21500 observations. Before
modeling the data, we intuitively expect both sex and age to have an effect on finishing time.

Since we had a continuous response variable, and we believe the data might be right skewed,
we considered a gamma model with log or inverse link. We see both links claim sex is significant,
but age is not. This goes against our intuition. It should also be noted that the log link gives
females a positive coefficient, which makes sense. However, the inverse link gives females a negative
coefficient, which does not make much sense. The log link had an AIC of 67296 and the AIC of
the inverse link was also 67296. Next, we ran the step function in R to consider other models. The
step function returned the same two models and so we next checked if the reduced model of just
sex (s1) was adequate. Running the ANOVA test in R, we obtain a p-value of 0.2459 for the log
link and a p-value of .2753 for the inverse link, and so these reduced models are sufficient.

From here, we proceeded with just the inverse link since there does not appear to much difference
and this is the canonical link. The next step was to consider higher order terms and interactions.
We found that the interaction s1 : x2 is significant given s1 and x2 in the model, and including this
in the model gave an AIC of 67293. We considered adding in the quadratic term x22 given s1 and
x2 in the model, and found it to be significant with an AIC of 65574. The next natural step was to
try adding the interaction term and the quadratic term to the model given s1 and x2 in the model.
We found that all terms were significant and this model had an AIC of 65569. This became our
model 1, i.e.

Model 1: s1, x2, x
2
2, s1x2.

Next, we ran the bestglm function in R to obtain other candidate models. In doing so, we see
that model 1 is the best model returned by this function with an AIC of 65564.57, not 65569. The
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next two models are

Model 2: s1, x2, x
2
2

Model 3: x2, x
2
2, s1x2.

Model 2 had an AIC of 65570.15 and model 3 had an AIC of 65706.30. It should be noted that at
this point, our candidate models satisfy our intuition. Next, we ran diagnostics on these models as
well as assessed their predictive power.

The diagnostics plot for model 1 is shown below:

.

The diagnostics plot for model 2 is shown below:

.
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The diagnostics plot for model 3 is shown below:

.

There does not appear to be much difference between any of the three diagnostics plots. The
main thing to note here is that high amount of observations that appear to be influential and high
leverage for all three models. To help choose a model, we assess the predictive power of all three
models.

We randomly chose 100 observations. We cross-validated multiple times to ensure the random
sample of observations did not have much effect. In doing this, we saw that all three models had
very similar predictive power.

Since all three models had similar predictive power, I chose model 2 as my final model for
parsimonious reasons. It would be one of the easier models to explain since it does not have the
interaction term. Although it had slightly higher AIC than model 1, it is one of the smaller models.
This model can be specified as

log (µ̂i) = 0.1392− 0.01978si1 + 0.003382xi2 − 4.54 · 10−5x2i2.

A shortcoming of this model would be the quadratic term of age, which would be difficult to
explain to someone. Another shortcoming would be the negative coefficient on s1. Intuitively, we
would expect men to finish faster than women and thus if s1 = 1, then we would expect to add
time, not subtract. However, we met our intuition of both sex and age being related to finishing
time.
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